
The Splunk Derp Gun
Automating Splunk deployments in the Cloud 

with Ansible and Terraform
Robert Johansson – Timothy Mahoney

Securelink Sweden AB



About us:

• SecureLink Malmö

• Managed SIEM Team

• Book release 2020/04/01



A little background:

• Build a Splunk environment in GCP

• Be lazy, automate as much as possible

• Create “single button” deployment.



The plan:



What is a ”Derp Gun”

•In Online Gaming - A gun that causes a lot of damage 
with one shot *urbandictionary.com

•In this context a Derp Gun is a “one shot” Splunk 
deployment. 



Provisioning with a 
Derp Gun in GCP
• Streamline Provisioning of New Resources in GCP

• Automate complicated setups such as Load 
Balancers

• Rapidly provision hosts, disk, network 
infrastructure



Configuration with a 
Derp Gun in GCP
• Automate configuration of Splunk hosts by role.

• Maintain configurations as repos in Git.

• Allow for new Splunk hosts to be configured as 
quickly as they can be provisioned.

• Maintain consistent configurations across the 
entire deployment.



The Tools of the Trade

• GCP Console

• Ansible AWX

• Terraform

• Gitlab

• Vault



Google Cloud

• Obviously: Cloud Infrastructure

• IAM

• Autoscaling of Instance Groups



Terraform

• Create infrastructure as code

• Providers and Resources

• Available by default in GCP

• Works with Azure, AWS, AliCloud, etc

• Idempotent

• Can be used with anything that has an 
API: SignalFX, Dominos Pizza, etc



Ansible

• Perform Automated Tasks

• Configuration of Hosts

• Deployment of Apps, Indexes



Gitlab, Github, etc

• Store configurations used by 
Terraform and Ansible

• Revision Control

• Collaboration 

• CI/CD

• More Dev/Ops buzzwords..



Vault

• Stores secrets 

• Works with Terraform, Ansible

• Token based access

• Intgrates with Cloud KMS, IAM

• Can act as a Certificate Authority

• Can perform encryption services



Setting up a 
Terraform 
Environment
• Use bucket storage to allow tfstate to be shared

• Enable versioning on the bucket to retain backups of 
the state file in case of corruption

• Use a cloud ACL to limit access to the state file 

• Bucket is accessible from the cloud shell

• Bucket provides state locking



Simple Terraform 
Example: State Bucket



Start with a sturdy 
bucket.

• Bucket to store tfstate file

• Keep last 50 versions of the 
file

• ACL to protect access



Provisioning 
the Needed 
Resources



Terraforming 
a 

Single Host

• Variables declared in tfvars 
file

• Tags are used by other 
resources such as load 
balancers, instance groups 
and firewalls

• Labels are used by Ansible

• Boot disk is created by 
default, destroyed if the 
host is changed.



Provisioning Storage

• Disks for Splunk, Warm and 
Cold

• Persistent Disks are not 
destroyed by host changes.

• Disks can be increased in 
size and filesystems resized 
with Ansible

• Prevent_destroy lifecycle 
function doesn’t really work 
as expected.



Attaching Provisioned 
Disks

• Declared in compute 
resource. 

• Name declared in 
configuration is also visible 
in /dev/disk/by-id/



Compute Host 
Network Settings

• Public and Private subnets 
and interfaces

• Public IPs use NAT

• Firewall rules set globally 
upstream



Using Modules to 
Create Clusters

• Variables declared in 
Module

• Module is a subfolder of the 
project

• Indexer_count builds 
number of hosts



Workflow with Vault

• Gitlab Configuration

• Vault Secrets

• Terraform Provisioning

• Ansible Configuration



Generate Secrets

• Generate Splunk Secrets

• Easily done in Terraform

• Don’t ask about randomness



Store Secrets in Vault

• Write config data to Vault

• Used later by Ansible for 
configuration

• Minimize configuration required to 
build a new Splunk cluster.





Ansible 
Workflow



Ansible Playbooks

• Uses Labels in GCP set by 
Terraform

• Applies to Roles in Ansible



Ansible Roles



Variables and Secrets



Push and Pull to Git

• Use Ansible to create 
projects in GitLab from 
templates

• Pull config from project if it 
already exists

• One place for all the current 
configs



Git Project

• Separate project for 
each cluster and 
function

•All Splunk config is 
in apps, nothing in 
system/local

•Using Splunk base 
apps standard



What could possibly go 
wrong?

• Easy come, easy go

• Corrupt Terraform Statefile

• Terraform Lifecycle doesn’t 
work if code is removed.

• Restarting the cluster all at 
once



Some assembly 
required.



Bigger, Better, More 
Derpy

• Autoscaling

• Further Vault Integration

• Single Configuration Source

• Log All The Things to Splunk

• SmartStore for Cold Buckets

• Automagic PubSub

• Consul for Connectivity




