
O11y vs
Monitoring
What we talk about when we talk about Observability

Timothy Mahoney

Stockholm Splunk Users Group

January 19, 2023

Who am I?

• Timothy Mahoney

• Senior Systems Engineer at
Swedish furniture company
you've probably never heard
of..

• Splunk Derp Gun co-
presenter

• Volunteer Arbiter for RIPE

• Former Satellite Engineer

What I do

• Senior Systems Engineer in the Observability
Pipeline Team

• Observability Framework

• OpenTelemetry and OpenTelemetry Collector

• Documentation, Examples, Demos, Labs, Tests

• INGKA Native Clouders program training lab on
O11y and Distributed Tracing

What are we
even talking
about?

Control Theory

• Control Theory revolves around
systems

• Observability in the control theory
context is a generalization

• Observability is gaining internal
insight into a system from its
external signals

O11y in the IT
systems
context

• IT Operational Observability Signals

• The overused "Three Pillars of Observability"

• Different types of systems use different types of
observability.

It all begins
with logs..

The pitfalls of printf()

• Devs use printf() to write logs

• Common practice

• Syslog or stdout

• Format? Context? Correlation?

Observability in the
age of
Microservices

• Dev/Ops

• Stateful and Stateless Workloads

• Containerized workloads

• CI/CD

• Microservices trade the simplicity of the application for
the complexity of the system.

Making logs
great again:

Metrics

Metrics
should be...

Traces

How do
traces work?

What do traces
look like?

What is a
span?

"We're just
going to turn
the logs off..."

YOU'RE GOING TO
WHAT?

SPAN EVENTS

Trace
propagation,
message
queues and
databases.

Context propagation
in PubSub messages

Context propagation
in SQL message fields

Tracing for
CI/CD
Pipelines

• Trace a build process

• Why does a build take so long?

• What is delaying our deployment?

Using traces to
map services
• Trace baggage can include key value
pairs to map to services, shopping carts,
users, to spans.

• Trace data can be used to map a system
"as-built"

• Many teams have no clue who their
consumers are

Correlating
Signals

Putting it all
together.

TEMPLE

https://medium.com/@YuriShkuro/temple-six-pillars-of-
observability-4ac3e3deb402

OpenTelemetry

Instrumentation
Libraries

Libraries and SDKs available from
opentelemetry.io

Kubernetes can auto-inject instrumentation
libraries for Java, Python and Node.JS
applications.

Automagic Instrumentation

Project Maturity

OpenTelemetry
Collector
• Provided by OpenTelemetry Project

• Contrib with Vendor Specific Exporters

• Collect, Process and Export Telemetry Data

• Observability Pipeline Team offers a vendor
specific contrib

Role of the OpenTelemetry Collector

Sinks

• Where your application sends its telemetry signals.

Examples:

• GCP Monitoring

• Splunk

• Loki

• Tempo

• Jaeger

• Zipkin

Fan Out

• Instrument once and send to one or
multiple sinks

• Change only the collector configuration to
send to a new sink

• Multiple supported exporters using the
collector contrib.

OpenTelemetry
Collector
Export Protocols

• Native OTLP

• Jaeger

• Zipkin

• Splunk

• Pub/Sub

The
OpenTelemetry
Collector is not
a protocol
translator • The general idea is that your telemetry is

transported via OTLP to a tool/sink and not
translated from one contrib protocol to
another.

Cloud Agnostic

• Instrument once, consume anywhere.

• Use the same instrumentation for your application
in different environments.

• Run the same code in Azure, GCP, AliCloud with the
same instrumentation and only change the collector
config to suit your needs.

How do we differentiate
between Monitoring and
Observability?

I will admit to listening to way too much
O11ycast.

Observability is not
the tooling.

• Splunk, Google Monitoring, Grafana,
and Jaeger are all tools that interpret,
process and act upon observability
data. Just by sending data to them, you
do not have observability.

Observability
costs money • It's should be part of any service budget.

• It takes time to instrument code.

• It should be a NFR of any project.

• You can easily defend the cost of
your observability data if you
are actively using it and getting value from
it.

Observability gives
value
• How are you even sure your application is

working as expected if you can't observe it?

• If you put the effort into instrumenting your
code, you will be rewarded with a deeper
understanding of how it is working.

Observability
costs money • It's should be part of any service budget.

• It takes time to instrument code.

• It should be a NFR of any project.

• You can easily defend the cost of
your observability data if you
are actively using it and getting value from
it.

Common
Challenges in
Observability

• Write once, read never database

• Those "I need ALL the data" people

• Dashboards as technical debt

• "You build it, you run it" team decides to
run own observability stack

• "What do you mean this isn't a debugging
tool?"

• Trying to solve data or business
observability issues using only application
telemetry.

Site
Reliability
Engineering

Created by
Google

SRE book is
freely available

©
 In

gka
 H

oldin
g B

.V
. 20

25

45

Service Level Agreements
Service Level Objectives
Service Level Indicators

Where do
we even
begin?

What metrics can we use to describe
the critical aspects of our service?

Where is the best place to measure
them?

Who is using this service?

What are our Service Level
Indicators?

©
 In

gka
 H

oldin
g B

.V
. 20

25

47

Metrics: A refresher course in one slide

LETS

• Latency

• Errors

• Traffic

• Saturation

SREs Four Golden Signals

RED

• Rate

• Error

• Duration

Workload-centric

USE

• Utilization

• Saturation

• Errors

System-centric

Delta, Cumulative, Gauge

We don't want to analyze metrics for
every aspect of our service.

We don't need to create a bunch of
special rules and tests based on one-off
scenarios.

We are only interested in the metrics
that make our users happy.

Happy Users
Happy Engineers

So how is looking at
metrics for SLOs
different than just
monitoring?

©
 In

gka
 H

oldin
g B

.V
. 20

25Where do I start?

How do we go from a few latency and error
metrics to SLOs?

Metrics are our Service Level Indicators

Specifically chosen and measured at the
closest point to the user.

©
 In

gka
 H

oldin
g B

.V
. 20

25

50

Simplified SLIs

SLI is a measurement of performance.

• Good events vs Total Events by Time

• 200s vs All Http Requests per Month

• All events that aren't 500s against all events.

• Money spent on compute vs GCP budget per
year

©
 In

gka
 H

oldin
g B

.V
. 20

25

51

Request based SLIs

Measured counting atomic units of
service.
Overall performance, but low
granularity.

©
 In

gka
 H

oldin
g B

.V
. 20

25

52

Windows-based SLIs

Group performance by time windows and
count good vs bad windows.

95% http 20x responses per 1 minute window

P95 latency metric less than 100ms per 5 minute window

©
 In

gka
 H

oldin
g B

.V
. 20

25

53

What makes a good SLI?

Metrics:

• Delta or Cumulative for Request Based SLI

• Delta, Cumulative or Gauge for Windowed SLI

• Not high cardinality

Time:
• Hours for alerting

• Weeks for tactical decisions

• Months for strategic decisions

Linear measurement of user happiness.
Percentage

Error Budgets
• Maximum amount of time a technical system can fail without

contractual consequences.

• A measurement of the difference between actual and desired
performance.

• When are users unhappy, when do people notice.

©
 In

gka
 H

oldin
g B

.V
. 20

25

55

Burn Rate

The rate at which the error budget is consumed.

Make your alerting decisions based on your burn rate.

Clear indication if a problem needs immediate attention, if it
can wait until morning or if it needs to be addressed in the next
sprint.

©
 In

gka
 H

oldin
g B

.V
. 20

25

56

It all comes down to time.

When describing the reliability of a service,
the key denominator is time. Requests over
time, errors over time, latency over time.

©
 In

gka
 H

oldin
g B

.V
. 20

25

57

Availability and the
mythical nine nines

Available minutes / total minutes

Fundamental layers set the limits of your
reliability.
You can't have 99.999% reliability on a 99.9%
reliable network with a 98% reliable database.
The cost of additional nines is exponential.

©
 In

gka
 H

oldin
g B

.V
. 20

25

58

Appropriate Reliability

• What is reasonable for our service?

• What timeframe?

• How is our service being used?

• How many resources are we willing to
commit to ensure higher reliability?

• Can we get eyes on a problem in time?

©
 In

gka
 H

oldin
g B

.V
. 20

25

59

Service Level Agreements

The "do not cross" line.

SLA should always be lower than your SLO.

If you don't have an SLA, consider setting
SLOs first as a test of what is possible.

Bust your SLA and the fun police get
involved.

The role of a SLO

Soft limit

Performance expectation

Not a fixed contract

Meant to be revised, reviewed,
updated.

Do you engineer for perfection, or
do you set reasonable expectations?

©
 In

gka
 H

oldin
g B

.V
. 20

25

61

SLOs for Engineers

Do we need to alert the person on call or can
this issue wait?

Do we have room in our error budget to
deploy a major change?

Did that last deploy change our burn rate?

We blew through our error budget, let's do a
blameless post-mortum.

©
 In

gka
 H

oldin
g B

.V
. 20

25

62

SLOs for Product Owners

Are we living up to our SLAs?

Do we have room to add more features?

Are we making changes that make the
consumers happy?

©
 In

gka
 H

oldin
g B

.V
. 20

25

63

SLOs for Engineering
Managers

Do we have the resources to increase our
SLA?

Are we meeting our SLO goals?

Do we focus on developing new features or
increasing reliability?

Are we burning up on-call time for non-
critical issues?

Do we focus on features or stability in the
next sprint?

©
 In

gka
 H

oldin
g B

.V
. 20

25

64

SLOs in the wild

• Share your SLIs and SLOs to create a reasonable expectation
of service level for your consumers.

• Choose a synchronous or asynchronous means of sending
data to an API based on latency and peak request SLIs.

• Communicate service issues to stakeholders.

• Allow teams to understand service issues without having
deep technical knowledge of your service or share all your
telemetry.

But my service is feature
driven...

• SLO can be thought of as
acceptable level of risk.

• SLOs can be an integral part
of your DORA metrics.

Is it good enough?

Comparing
SLOs to ITSI

Philosophical
Differences

Free vs Proprietary

Decentralized vs Centralized

Clear boundaries between business and
operational data

Tool agnostic vs Splunk specific

Integral component driving discussion between
engineers, EM and PO

Design
Differences

Measure as close as possible to consumer vs weighted service
decomp

SLO data can be collected by APIs*

Burn Rates vs Adaptive Thresholds

SLIs vs KPIs

Metrics consumed where they are produced vs single source of truth

DORA metrics vs Event Analytics

Tracing as an automagic service map

Thoughts?

Are you adopting SRE?

Is anyone mixing SRE and ITSI in production?

Would SLI or SLO data scraped from Prometheus and
API or a Time-Series database be of any use as a KPI in
ITSI?

Is anyone using trace propagation data to create
service maps in Splunk?

Find out more here:

• https://monitoring.love/community/

• https://communityinviter.com/apps/cloud-native/cncf

• https://opentelemetry.io

• https://info.honeycomb.io/observability-engineering-oreilly-book-
2022

• https://www.heavybit.com/library/podcasts/o11ycast

• https://sre.google

• https://medium.com/@YuriShkuro/temple-six-pillars-of-
observability-4ac3e3deb402

https://monitoring.love/community/
https://communityinviter.com/apps/cloud-native/cncf
Https://opentelemetry.io
https://info.honeycomb.io/observability-engineering-oreilly-book-2022
https://info.honeycomb.io/observability-engineering-oreilly-book-2022
https://www.heavybit.com/library/podcasts/o11ycast
https://sre.google
https://medium.com/@YuriShkuro/temple-six-pillars-of-observability-4ac3e3deb402
https://medium.com/@YuriShkuro/temple-six-pillars-of-observability-4ac3e3deb402

Thanks!

	Slide 1: O11y vs Monitoring
	Slide 2: Who am I?
	Slide 3: What I do
	Slide 4: What are we even talking about?
	Slide 5: Control Theory
	Slide 6: O11y in the IT systems context
	Slide 7: It all begins with logs..
	Slide 8: The pitfalls of printf()
	Slide 9: Observability in the age of Microservices
	Slide 10: Making logs great again:
	Slide 11
	Slide 12: Metrics
	Slide 13
	Slide 14
	Slide 15: Traces
	Slide 16
	Slide 17
	Slide 18
	Slide 19: "We're just going to turn the logs off..."
	Slide 20
	Slide 21: Tracing for CI/CD Pipelines
	Slide 22
	Slide 23: Using traces to map services
	Slide 24: Correlating Signals
	Slide 25: Putting it all together.
	Slide 26: TEMPLE
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34: OpenTelemetry Collector Export Protocols
	Slide 35
	Slide 36
	Slide 37: How do we differentiate between Monitoring and Observability?
	Slide 38: I will admit to listening to way too much O11ycast.
	Slide 39: Observability is not the tooling.
	Slide 40: Observability costs money
	Slide 41: Observability gives value
	Slide 42: Observability costs money
	Slide 43: Common Challenges in Observability
	Slide 44: Site Reliability Engineering
	Slide 45: Service Level Agreements Service Level Objectives Service Level Indicators
	Slide 46
	Slide 47: Metrics: A refresher course in one slide
	Slide 48
	Slide 49: Where do I start?
	Slide 50: Simplified SLIs
	Slide 51: Request based SLIs
	Slide 52: Windows-based SLIs
	Slide 53: What makes a good SLI?
	Slide 54
	Slide 55: Burn Rate
	Slide 56: It all comes down to time.
	Slide 57: Availability and the mythical nine nines
	Slide 58: Appropriate Reliability
	Slide 59: Service Level Agreements
	Slide 60
	Slide 61: SLOs for Engineers
	Slide 62: SLOs for Product Owners
	Slide 63: SLOs for Engineering Managers
	Slide 64: SLOs in the wild
	Slide 65: But my service is feature driven...
	Slide 66: Is it good enough?
	Slide 67: Comparing SLOs to ITSI
	Slide 68: Philosophical Differences
	Slide 69: Design Differences
	Slide 70: Thoughts?
	Slide 71
	Slide 72: Find out more here:
	Slide 73: Thanks!

